Package Qualification Report

EMD1706
4mm 24-lead QFN Plastic Package

Eclipse MDI
4425-104 Fortran Drive
San Jose, CA
95131
May 2020
Contents

1. Summary 2
2. Reference Documents 2
3. Product Description and Information 3
 3.1 Die Information 3
 3.2 Assembly and Package Information 3
4. Product Qualification Overview 4
 4.1 General Summary 4
5. Analysis of Results 5
 5.1 High Temperature Storage Life (HTS) 5
 5.2 Preconditioning/Moisture Sensitivity Level (MSL) Classification 5
 5.3 Temperature Cycling 5
 5.4 Physical Integrity 5
 5.5 Destructive Physical Analysis (DPA) 6
 5.6 Electrostatic Discharge Sensitivity (ESD) Classification 6
 5.7 Unbiased HAST 6
6. Revision History 6
1. Summary
This document outlines the package qualification results for EMD1706, a distributed amplifier housed in a 4x4mm QFN package. The qualification involves evaluating the circuit specified, along with the packaging assembly at Tong Hsing Philippines.

2. Reference Documents
ANSI/ESDA/JEDEC JS-001 “For Electrostatic Discharge Sensitivity Testing Human Body Model (HBM) - Component Level”
ANSI/ESDA/JEDEC JS-002 “For Electrostatic Discharge Sensitivity Testing Charged Device Model (CDM) - Device Level”
JESD22-A103 “High Temperature Storage Life”
JESD22-A113 “Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing”
JESD22-A104 “Temperature Cycling”
JESD74A “Early Life Failure Rate Calculation Procedure for Semiconductor Components”
JESD22-A118B “Accelerated Moisture Resistance -Unbiased HAST”
3. Product Description and Information
EMD1706 is a distributed amplifier designed for high bandwidth applications. It consists of a GaAs amplifier die housed in a plastic overmold 4x4mm QFN, assembled in the Philippines.

3.1 Die Information
Die Size: 1.52 x 2.7 mm
Die Thickness: 100 μm
Fabrication: 0.15 μm e-beam GaAs pHEMT
Foundry: WIN Semiconductors (Taiwan)
Mask ID: DP936

3.2 Assembly and Package Information
Package Style: PQFN
Assembly Manufacturer: Tong Hsing (Philippines)
Package Body Dimensions: 4.0 x 4.0 x 0.91 mm
Lead Count: 24
Leadframe Material: C194-FH
D/A Pad Size: 2.65 x 2.65 mm
D/A Plating: One-side Rough Ni PPF
Lead Pitch: 0.5 mm
Lead Finish: NiPdAu
Die Attach: Namics XH9890-6A
Wire Bond: 25 μm diameter Gold Wire
Package Material: Sumitomo G770HCD
Marking Method: Laser
4. Product Qualification Overview

4.1 General Summary

Qualification Vehicle: EMD1706
Lot Numbers/Date Codes: 0103, 0104, 0105
Date Codes: 1843, 1844

<table>
<thead>
<tr>
<th>Test</th>
<th>Condition</th>
<th>Endpoints</th>
<th>Fail/Sample Size</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD (HBM)JEDEC JS-001</td>
<td>1 positive discharge and 1 negative discharge per pin for each pin combination</td>
<td>Minimum failure from any sample</td>
<td>0/11</td>
<td>Class 0B 150V</td>
</tr>
<tr>
<td>ESD (CDM)JEDEC JS-002</td>
<td>Plate charged and discharge with pogo pin per pin</td>
<td>Minimum failure from any sample</td>
<td>0/3</td>
<td>Class C2a 700V</td>
</tr>
<tr>
<td>Destructive Physical Analysis (DPA) MIL-STD-883</td>
<td>X-ray, C-SAM, Visual Inspection, Die shear, Bond pull</td>
<td>N/A</td>
<td>0/15</td>
<td>Pass</td>
</tr>
<tr>
<td>High Temperature Storage Life (HTS) JEDEC SD22-A103A</td>
<td>125°C Ambient Temperature</td>
<td>1000 hours</td>
<td>0/42</td>
<td>Pass</td>
</tr>
<tr>
<td>Temperature Cycling JEDEC SD22-A104</td>
<td>Preconditioned Cond. C (-65°C to +150°C) Non-preconditioned Cond. H (-55°C to +150°C)</td>
<td>200 cycles – Read point, continue to 500 cycles</td>
<td>0/42</td>
<td>Pass</td>
</tr>
<tr>
<td>Preconditioning JESD22-A113</td>
<td>MSL1: +85°C, 85% Relative Humidity (RH)</td>
<td>Bake at 125°C for 24 hours Moisture Soak 168 hours 3x Reflow</td>
<td>0/165</td>
<td>Pass</td>
</tr>
<tr>
<td>Unbiased HAST JESD22-A118B</td>
<td>Condition A, 130°C, 85% RH, 96 hour</td>
<td>96 Hours</td>
<td>0/42</td>
<td>Pass</td>
</tr>
</tbody>
</table>
5. Analysis of Results

5.1 High Temperature Storage Life (HTS)
Test Follow JEDEC JESD22-A103D to determine the effects of time and temperature, under storage conditions, for thermally activated failure mechanisms. Known good devices are stressed for 1000 hours at 125°C followed by production test re-screening.

Result No thermally activated failures were observed at the conclusion of this test.

5.2 Preconditioning/Moisture Sensitivity Level (MSL) Classification
Test Simulate the effects of board assembly prior to reliability testing with guidance from JEDEC JDSD-22-A1113. Preconditioning of SMD packages is used to simulate the effects of board assembly prior to reliability testing. This allows reliability testing at the packaged device level on as shippable products with a board assembly simulation. During preconditioning, test samples are subjected to temperature cycling (optional), dry bake, moisture soaking, solder reflow simulation, flux, rinse, dry, and electrical test before reliability testing.

Result Parts passed the MSL conditions as per table in Section 4.1. No failures were detected.

5.3 Temperature Cycling
Test Following JEDEC Standard 22-A104, this test is conducted to determine the ability of components and solder interconnects to withstand mechanical stresses induced by alternating high and low temperature extremes. Permanent changes in electrical and/or physical characteristics can result from these mechanical stresses. An electrical verification test is completed after cycling.

Result No visual or electrical failures were found.

5.4 Physical Integrity
Test MIL-STD-883 guidelines were used to confirm the coplanarity and solderability of the devices to printed circuit boards.

Result All samples pass solderability test. Solder coverage on all leads were greater than or equal to 95%. Coplanarity tests pass and are within expected specifications.
5.5 Destructive Physical Analysis (DPA)

Test Physical integrity testing is completed with X-ray, CSAM, optical inspection, wire bond pull and die shear testing. The appropriate test method is specified by MIL-STD-883.

Result All parts examined were within specification. Results point to a process that is repeatable and controlled.

5.6 Electrostatic Discharge Sensitivity (ESD) Classification

Test Simulates electrostatic discharges that may be placed on the part during handling and assembly of the device. Human Body Model (HBM) testing was performed as per JEDEC JS-001. Charged Device Model (CDM) testing was performed as per JEDEC JS-002.

Result ESD results are recorded in the table in section 4.1.

5.7 Unbiased HAST

Test Unbiased HAST is performed (JESD22-A118B) for the purpose of evaluating the reliability of non-hermetic packaged solid-state devices in humid environments. It is a highly accelerated test which employs temperature and humidity under non-condensing conditions to accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors which pass through it. Bias is not applied in this test to ensure the failure mechanisms potentially overshadowed by bias can be uncovered (e.g., galvanic corrosion). This test is used to identify failure mechanisms internal to the package and is destructive.

Result Unbiased HAST results passed. No failures as presented in section 4.1.

6. Revision History

Rev A: Released on 8th April 2019, Ryan Clement